博客
关于我
【数论】异或
阅读量:374 次
发布时间:2019-03-04

本文共 789 字,大约阅读时间需要 2 分钟。

题目描述

SarvaTathagata是个神仙,一天他在研究数论时,书上有这么一个问题:求不超过n两两的数的gcd。

SarvaTathagata这么神仙的人当然觉得这个是sb题啦。学习之余,他还发现gcd的某一个特别好的性质:如果有两个数i,j满足gcd(i,j)=ij(这里的为c++中的异或)的话,那么这两个数组成的数对(i,j)就是一个nb的数对(这里认为(i,j)和(j,i)为相同的,并不需要计算2次)。

当然,SarvaTathagata并不会只满足于判断一个数对是否nb,他还想知道满足两个数都是不超过n并且nb的数对有多少个。

由于SarvaTathagata实在是太神仙了,他认为这种题实在是太简单了。于是他找到了你,看看你是否能解决这个问题。

输入

共一行一个整数n,含义如题所述。

输出

一行一个整数,表示nb的数对的个数。


Sample1-in
12
Sample1-out
8

Sample2-in
123456
Sample2-out
214394

思路

先设:a>b
根据异或的性质,我们可以发现a^b是会大于等于a-b的。(这个可以推一下)
然后gcd(a,b)会小于等于a-b;那么当a^b=gcd(a,b)时a ^b=a-b;
题目中我们可以枚举c = gcd(a,b),然后枚举它的倍数,使gcd(a,b)=a-b,然后和异或对比。

#include<cstdio>int n,ans;int main(){    scanf("%d",&n); for(int i = 1; i < n; ++i)  //枚举gcd(a,b)=b   for(int j = i+i; j <= n; j+=i)  //枚举倍数a     if((j^i) == j-i) ++ans;  //异或 printf("%d",ans);  //输出答案}

转载地址:http://mhkg.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0060---Tcp长连接和短连接_Http长连接和短连接_UDP长连接和短连接
查看>>
Netty工作笔记0061---Netty心跳处理器编写
查看>>
Netty工作笔记0062---WebSocket长连接开发
查看>>
Netty工作笔记0063---WebSocket长连接开发2
查看>>
vue样式穿透 ::v-deep的具体使用
查看>>
Netty工作笔记0065---WebSocket长连接开发4
查看>>
Netty工作笔记0066---Netty核心模块内容梳理
查看>>
Vue基本使用---vue工作笔记0002
查看>>
Netty工作笔记0068---Protobuf机制简述
查看>>
Netty工作笔记0069---Protobuf使用案例
查看>>
Netty工作笔记0070---Protobuf使用案例Codec使用
查看>>
Netty工作笔记0071---Protobuf传输多种类型
查看>>
Netty工作笔记0072---Protobuf内容小结
查看>>
Netty工作笔记0073---Neety的出站和入站机制
查看>>
Netty工作笔记0074---handler链调用机制实例1
查看>>
Netty工作笔记0075---handler链调用机制实例1
查看>>
Netty工作笔记0076---handler链调用机制实例3
查看>>
Netty工作笔记0077---handler链调用机制实例4
查看>>
Netty工作笔记0078---Netty其他常用编解码器
查看>>
Netty工作笔记0079---Log4j整合到Netty
查看>>